Solving and factoring boundary problems for linear ordinary differential equations in differential algebras

نویسندگان

  • Markus Rosenkranz
  • Georg Regensburger
چکیده

We present a new approach for expressing and solving boundary problems for linear ordinary differential equations in the language of differential algebras. Starting from an algebra with a derivation and integration operator, we construct a ring of linear integro-differential operators that is expressive enough for specifying regular boundary problems with arbitrary Stieltjes boundary conditions as well as their solution operators. Based on these structures, we define a new multiplication on regular boundary problems in such a way that the resulting Green’s operator is the reverse composition of the constituent Green’s operators. We provide also a method for lifting any factorization of the underlying differential operator to the level of boundary problems. Since this method only needs the computation of initial value problems, it can be used as an effective alternative for computing Green’s operators in case one knows how to factor the given differential operators.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Modified Laplace Decomposition Method for Singular IVPs in the second-Order Ordinary Differential Equations

  In this paper, we use modified Laplace decomposition method to solving initial value problems (IVP) of the second order ordinary differential equations. Theproposed method can be applied to linear and nonlinearproblems    

متن کامل

Discrete Boundary Problems via Integro-Differential Algebra

The notion of integro-differential algebra was introduced in [Rosenkranz, M. and Regensburger, G.: Solving and Factoring Boundary Problems for Linear Ordinary Differential Equations in Differential Algebras, J. Symbolic Comput., 2008(43/8), pp. 515–544] to facilitate the algebraic study of boundary problems for linear ordinary differential equations. In this report, we construct a discrete anal...

متن کامل

Nvestigation of a Boundary Layer Problem for Perturbed Cauchy-Riemann Equation with Non-local Boundary Condition

Boundary layer problems (Singular perturbation problems) more have been applied for ordinary differential equations. While this theory for partial differential equations have many applications in several fields of physics and engineering. Because of complexity of limit and boundary behavior of the solutions of partial differential equations these problems considered less than ordinary case. In ...

متن کامل

Application of Laguerre Polynomials for Solving Infinite Boundary Integro-Differential Equations

In this study‎, ‎an efficient method is presented for solving infinite boundary integro-differential equations (IBI-DE) of the second kind with degenerate kernel in terms of Laguerre polynomials‎. ‎Properties of these polynomials and operational matrix of integration are first presented‎. ‎These properties are then used to transform the integral equation to a matrix equation which corresponds t...

متن کامل

Numerical method for singularly perturbed fourth order ordinary differential equations of convection-diffusion type

In this paper, we have proposed a numerical method for singularly perturbed  fourth order ordinary differential equations of convection-diffusion type. The numerical method combines boundary value technique, asymptotic expansion approximation, shooting method and  finite difference method. In order to get a numerical solution for the derivative of the solution, the given interval is divided  in...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • J. Symb. Comput.

دوره 43  شماره 

صفحات  -

تاریخ انتشار 2008